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Abstract
The efficiency of the variational perturbation theory (You et al 2000 Phys. Rev.
C 62 045503) formulated recently for many-particle systems is examined by
calculating the ground state correlation energy of the 3D electron gas with
the Coulomb interaction. The perturbation beyond a variational result can be
carried out systematically by the modified Wick’s theorem which defines a
contraction rule about the renormalized perturbation. Utilizing the theorem,
variational ring diagrams of the electron gas are summed. As a result, the
correlation energy is found to be much closer to the result of the Green function
Monte Carlo calculation than that of the conventional ring approximation.

PACS numbers: 05.30.Fk, 71.10.Ca

1. Introduction

A variational method has been widely used as a convenient and powerful tool to calculate
physical quantities such as energy and order parameters [1–5]. The most important advantage
of this approach consists in its applicability even for strongly correlated systems through
suitable trial wavefunctions. However, it is extremely difficult to improve the results for
systems with many degrees of freedom. In contrast, the results of the perturbative approach
are systematically improved by calculating the further corrections using the Feynman rule
[6–8]. However, convergency cannot be guaranteed in the unweakly coupled cases.

There have appeared many efforts trying to combine the above two approaches in order
to overcome each drawback [9–14]. Many studies have been performed mainly in the areas
of relativistic field theories and quantum mechanics under the principle of minimal sensitivity
(PMS) [9], which says that approximated physical quantities in the perturbation theory should
be minimized with respect to the parameters absent in the original Hamiltonian. These studies
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are called optimized perturbation theory or variational perturbation theory (VPT), which is
applied very successfully to quantum mechanical problems such as the anharmonic oscillator
and the double-well potential. However, we are faced with extremely complex higher order
calculations in the case of quantum field theories.

Recently, papers on another kind of VPT have been published [15–18]. This approach
is not related to the PMS, because the minimization is carried out at the zeroth order and the
variational parameters are fixed before the perturbative calculation. It has a simple expansion
rule, which makes the VPT approach to many-particle systems more manageable. In this paper,
the VPT for fermion systems of [17] is briefly reviewed, and as a test of the efficiency of the
method, we calculate the ground state correlation energy of the three-dimensional Coulomb
electron gas within a ring approximation.

2. Variational perturbation theory

In this section, we briefly review the VPT in the functional integral formalism [17]. The
partition function for fermion systems with two-body interaction is generally given by

Z =
∫

D[ψ̄ψ] exp
(
−Go−1

ij ψ̄ iψj − Vijklψ̄ i ψ̄jψkψl

)
(1)

where ψ̄ i, ψi are Grassmann variables and each subscript stands for all possible quantum
numbers including imaginary time. The integration and summation symbols are omitted
by the summation convention. Here, Go is the bare Green function matrix and V is an
interaction tensor. The second term of the exponent in equation (1) is the perturbative term
in the conventional perturbation theory. Now, introducing a variational Green function G, the
exponent is rewritten as

−G−1
ij ψ̄ iψj −

(
Go−1

ij − G−1
ij

)
ψ̄ iψj − Vijklψ̄ iψ̄jψkψl. (2)

Then, the second and third terms in equation (2) are regarded as renormalized interaction.
According to the Jensen–Peierls inequality (Tr e−β(H1+H2) � Tr e−βH1 · e−β〈H2〉H1 where
〈H2〉H1 = Tr H2 e−βH1/Tr e−βH1 ) [19, 20], we get the inequality between the thermodynamic
potential � and the variational thermodynamic potential �̄(G); � � �̄(G). Minimizing
�̄(G) with respect to G, we obtain an equation of G as

G−1 − Go−1
+ � = 0 (3)

where 〈b|�|a〉 ≡ 2(Vibaj − Vbiaj )Gji . We note that G corresponds to the self-consistent
Hartree–Fock Green function for the interacting fermion system. Using condition (3), the
minimized variational thermodynamic potential �̄min and the correction part �� ≡ �− �̄min

are arranged as follows, according to the notation in [17]:

�̄min = 1

β
Tr ln G − 1

2β
Tr �G (4)

�� = − 1

β

〈
exp

[
−Vijkl

(
∂ηi

∂ηj
∂η̄k

∂η̄l

)′]〉
G,C

(5)

where 〈· · ·〉G ≡ · · · eη̄iGij ηj |η̄,η=0 represents the thermal average using G and the subscript C
indicates the connected contractions among all possible contractions by the modified Wick’s
theorem, equation (7). During the derivation of the above equations, Grassmann variables η̄,
η are introduced as source fields of the original fields ψ , ψ̄ , and the renormalized interaction
of equation (2) is expressed as functional derivatives about source fields. After integrating
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Figure 1. (a) Unit cell to construct Feynman diagrams; (b) the summation of variational ring
diagrams. The first-order diagram cannot exist in the present theory.

out the Gaussian integral
(∫

D[ψ̄ψ] exp
(−ψ̄ iG

−1
ij ψj + η̄iψi + ψ̄ iηi

) = Det G−1 eη̄iGij ηj
)

and
rearranging the thermodynamic potential under condition (3), we obtain equations (4) and (5).
Here, the primed derivative operation (· · ·)′ is defined as(
∂ηi

∂ηj
∂η̄k

∂η̄l

)′ ≡ (
∂ηi

∂ηj
∂η̄k

∂η̄l
− Gli∂ηj

∂η̄k
− Gkj∂ηi

∂η̄l

+ Glj∂ηi
∂η̄k

+ Gki∂ηj
∂η̄l

+ GliGkj − GljGki

)
. (6)

Carrying out the nth order calculation of the above operation, we find a modified Wick’s
theorem for the perturbative expansion of the present VPT as〈(

∂ηi1
∂ηj1

∂η̄k1
∂η̄l1

)′ · · · (∂ηin
∂ηjn

∂η̄kn
∂η̄ln

)′〉
G

= Sum of all possible contractions between different cells. (7)

Here we call one (· · ·)′ a unit cell and the contraction rule is as follows: each ∂ηi
is paired

with a ∂η̄j
in a different cell and then, each pair of derivatives ∂ηi

∂η̄j
is replaced by the Green

function Gji . In this pairing, every permutation of two derivatives changes the sign. The
differences from the original Wick’s theorem are to forbid intracell contraction and to use
the renormalized Green function G. The unit cell with an interaction, Vijkl

(
∂ηi

∂ηj
∂η̄k

∂η̄l

)′
, can

be described by a diagram as in figure 1(a). A contraction is to join two incoming and
outgoing lines together and to assign it a propagator G which corresponds to a double line. In
figure 1(b), we show ring diagrams with renormalized propagators, where the first-order
diagram does not exist because it is an intracell-joining diagram.

For example, the second-order perturbation of �� is given by

− 1

β
VijklVi ′j ′k′l′Gl′iGk′jGkj ′Gli ′ +

1

β
VijklVi ′j ′k′l′Gl′iGk′jGki ′Glj ′ . (8)

3. Coulomb electron gas

The present formulation can be easily applied to any fermion systems with two-body
interaction. In this section, the ground state correlation energy of the three-dimensional
Coulomb electron gas is calculated using the variational ring approximation which is described
by ring diagrams in figure 1(b). The model Hamiltonian is given by

H =
∑
kσ

εka
†
kσ akσ +

1

2

∑
kk′qσσ ′

′
v(q)a

†
kσ a

†
k′σ ′ak′−qσ ′ak+qσ (9)
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where a
†
kσ (akσ ) is a creation (annihilation) operator of an electron with wavevector k and spin

σ . We have defined εk = h̄2k2/2me and v(q) = 4πe2/V q2. Here, V,me and e are the system
volume, the electron mass and charge, respectively. The primed summation indicates that the
q = 0 term is excluded because of the cancellation with the positively charged background.
In this model, the interaction Vijkl of equation (1) is expressed as

Vijkl → Vk1σ1τ1,k2σ2τ2,k3σ3τ3,k4σ4τ4

= 1
2v(|k4 − k1|)δk1+k2,k3+k4δσ1σ4δσ2σ3δ(τ1 − τ2)δ(τ3 − τ4)δ(τ2 − τ3). (10)

The variational Green function G is determined by equation (3). For a homogeneous system,
Gkστ,kστ ′ is written as Gkσ (τ − τ ′) and the Fourier transform of equation (3) with respect to
time gives

Gkσ (iωn) = − 1

iωn − (ε̃kσ − µ)
(11)

where ωn = (2n + 1)π/β is the fermion Matsubara frequency with integer n, and ε̃kσ =
εk − ∑

q v(q)nk+qσ is the renormalized electron energy using the Fermi distribution function
with the renormalized energy, nkσ = 1/(eβ(ε̃kσ −µ) + 1).

Therefore, the minimized variational thermodynamic potential �̄min at T = 0 K is

�̄min =
∑
kσ

(ε̃k − µ)nkσ +
1

2

∑
kqσ

v(q)nk+qσ nkσ . (12)

This is the Hartree–Fock result. The second term cancels the doubly counted interaction
energy in the first term to give the singly counted result. If the interaction part of ε̃kσ and the
second term are summed up, �̄min has the same form as the conventional first-order result �1;
�1 = ∑

kσ (εk − µ)n0
kσ − 1

2

∑
kqσ v(q)n0

k+qσ n0
kσ , where n0

kσ = 1/(eβ(εkσ −µ) + 1). In addition,
the Fermi distribution function with a renormalized energy is a step function in the ground
state like that with a bare energy. Therefore, the Hartree–Fock ground state energy is equal
to the conventional first-order one, which results from the spherical symmetry of electron gas
[21]. Hence, one might think that the ground state energy obtained by higher order calculations
through the present VPT would produce the same result as that of the conventional perturbation
method. However, as we will see below, they are different because the VPT propagator has
a renormalized energy ε̃kσ and furthermore, there are some forbidden diagrams in the VPT
expansion, which are allowed in the conventional perturbation.

Since the present formalism parallels exactly the conventional perturbation except for
the modification of the Wick’s theorem and the renormalization of the propagator, we can
carry out the ring diagram summation without any difficulty. The ring contribution to the
thermodynamic potential is depicted in figure 1(b). The double line represents a renormalized
propagator G. The variational ring diagrams are summed up to the logarithmic function as in
the conventional ring approximation [6], namely,

1

2β

∑
qνn

ln[1 + v(q)F (q, νn)] − 1

2β

∑
qνn

v(q)F (q, νn) (13)

where νn = 2πn/β is the boson Matsubara frequency and F(q, νn) is the renormalized
Lindhard function,

F(q, νn) =
∑
kσ

nk+q,σ − nk,σ

iνn − (ε̃k+q,σ − ε̃k,σ )
. (14)

At zero temperature, the discrete frequency summation 1
2β

∑
νn

is replaced by a continuous

integral 1
4π

∫
dν.
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Figure 2. The variational Lindhard function F(q, 0) (large dotted line) at the zero temperature
and frequency; the small dotted line represents the free electron Lindhard function F0(q, 0). The
magnitudes are renormalized by F0(0, 0).

Figure 2 shows Lindhard functions at zero temperature. The small (large) dotted line
corresponds to the bare (renormalized) Lindhard function. According to the linear response
theory, the Lindhard function F0(q, ν) has the important properties that it is proportional to the
spin and charge susceptibilities of free fermion systems, χs

0 (q, ν) and χe
0 (q, ν). In addition,

F0(0, 0) is equal to the density of states at the Fermi surface, D(εF ) [22]. We note that
the values of F(q, 0) are much reduced by the inclusion of the exchange energy into a bare
energy band. Furthermore, the behaviour near q = 0 is completely different, which originates
from the much larger energy slope around the Fermi surface than the bare one. The difference
between F(q, ν) and F0(q, ν) results in different ground state energies between the variational
and conventional ring approximations.

The chemical potential µ is an independent variable of the thermodynamic potential
�(µ), hence in order to obtain the free energy as a function of electron density, we should
change the independent variable using the Legendre transformation; F(N) = �(µ)+µN and
− ∂�

∂µ
= N , where N is the number of particles and F(N) is the free energy. However, this

relation cannot be applied directly to approximations except for Hartree–Fock’s and Baym’s
self-consistent schemes [23] because − ∂�

∂µ
does not represent the particle number. Instead,

we use the fact that the Fermi wavevector does not change with the inclusion of correlation
according to Luttinger’s theorem [24]. Therefore, we approximate the free energy as follows:
F(N) � �̄min(µ0) + ��ring(µ0) + µ0N and − ∂�̄min

∂µ

∣∣
µ0

= N , where the Fermi wavevector (or
the density) is fixed by the second relation without the correlation part. In the case of the
conventional ring approximation, if �̄min is replaced by a non-interacting part �0, the free
energy by this transformation reproduces the random phase approximation (RPA) correlation
energy.

Figure 3 shows the correlation energy as a function of rs which is the averaged relative
distance between electrons defined by V = 4

3π(a0rs)
3N , where V,N and a0 are the system

volume, the number of electrons and the Bohr radius, respectively. The triangles are the result
of the Green function Monte Carlo calculation [25] and the better agreement with it is realized
by the VPT. The conventional rings contain only direct Coulomb interacting processes without
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Figure 3. The ground state correlation energy per particle calculated with ring diagrams; the solid
and open circles are results of the variational and conventional ring approximations, respectively.
The triangles represent the results of the Green function Monte Carlo calculation.

exchange contributions which are very important for fermion systems, and thus, the summation
of them gives the so-called RPA result [26]. On the other hand, the variational rings possess
infinitely many higher order exchange processes through the variational propagator G as well
as direct processes. As a result, we achieve much improvement in the correlation energy
beyond the RPA. It is well known that the ring approximation can be applied satisfactorily for
very small rs (rs � 1). In figure 3, however, we note that even for large rs , the variational
rings give successful results.

Here, we examined the efficiency of the VPT by calculating the correlation energy of
the Coulomb electron gas. Further corrections beyond variational rings and the extension
to finite temperatures are also easily accessible within the present VPT and we expect good
applications to any other system.

4. Summary

After briefly reviewing the VPT formulated recently for the many-particle systems, we have
applied this method to the Coulomb electron gas. The ground state correlation energy of the
Coulomb electron gas is calculated with the ring approximation of the VPT. Improvement
is achieved by the expansion with variational propagators. In particular, we note that even
for large rs , the approximation produces quite successful results, as is evident from the good
agreement with those of the Green function Monte Carlo calculation.
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